ANÁLISIS

Casuística en la analítica de cannabinoides

Debido al crecimiento incipiente de la industria del cannabis aunado con la progresiva legalización en muchos países y el creciente interés por las propiedades terapéuticas ya reconocidas por la ONU desde finales de 2020, cada vez es más necesario un control analítico mejorado y de calidad.

MONTSERRAT GÓMEZ-CARDOSO BERNET RESPONSABLE DE ANÁLISIS FÍSICO-QUÍMICO DE CTAEX MARIA PEREZ REY RESPONSABLE DE PROYECTO DE I+D+I DE CTAEX

legir un laboratorio de confianza que haya desarrollado un método analítico preciso y exacto es importante, pero no suficiente. La toma de muestras y la representatividad también juegan un papel relevante en la analítica y en la calidad de los resultados.

A continuación, se abordarán los factores más problemáticos que afectan hoy en día al análisis de cannabinoides:

Toma de muestras

La principal razón de realizar un muestreo es efectuar un análisis exacto y útil. No se puede obviar que las plantas de cannabis son químicamente complejas y que existe una variabilidad natural entre ellas, lo que hace necesario que la toma de muestras sea representativa. Dado que los métodos cromatográficos requieren proporciones y alícuotas muy pequeñas es de vital importancia que la muestra represente el total de la masa a analizar.

El problema fundamental al que se enfrenta el sector es la inexistencia de un protocolo estándar para toma de muestras de cannabis lo que hace que el error de muestreo pueda llegar a ser muy elevado. A menudo, los protocolos tienen en cuenta la superficie cultivada en lugar del número de plantas o indican una cantidad específica de muestra sin tener en cuenta el tamaño del cultivo. Además, no se sigue un patrón común para la toma de muestras.

Además, diversas investigaciones han demostrado la variabilidad que existe en el contenido de cannabinoides en las distintas plantas de un mismo cultivo, incluso a distintas alturas en una misma planta, siendo aquellas de la parte superior, las que cuentan normalmente con mayor contenido. Si solo se recolectasen las partes superiores de la planta, la muestra estaría sesgada por un contenido más elevado de cannabinoides lo cual, en ocasiones, podría perjudicar al agricultor si se habla de cannabinoides que pueden superar los límites legislados

A pesar de que siempre existe la posibilidad que la muestra que se decida analizar no dé el mismo resultado que si se analizase todo el cultivo, la forma de minimizar el error de mues-

El problema
fundamental al que
se enfrenta el sector
es la inexistencia de
un protocolo estándar
para toma de
muestras de cannabis
lo que hace que el
error de muestreo
pueda llegar a ser
muy elevado

treo es maximizar el tamaño del subconjunto de la población. Para ellos, se debe buscar un equilibrio entre minimizar este error sin llegar a obtener una cantidad excesiva de muestra que se pueda gestionar en un laboratorio.

Diferencia entre técnicas cromatográficas

Otro de los grandes problemas que enfrenta la analítica de cannabinoides es la falta de un método estandarizado para cannabinoides que evite la variabilidad entre los resultados para una misma muestra. Existen diferentes metodologías para cuantificar los porcentajes totales de las muestras y esto puede generar confusión a la hora de comparar resultados.

Varias técnicas cromatográficas han sido ampliamente utilizadas para la identificación y determinación de cannabinoides, entre las más comunes se encuentran la cromatografía de gases (CG-FID) y la cromatografía líquida de alta resolución (HPLC-DAD). Ambas técnicas, ofrecen resultados sensibles, selectivos y precisos, pero cuantifican cannabinoides de forma muy diferente.

La inestabilidad térmica que presentan los cannabinoides hacen que las altas temperaturas necesarias para un análisis de CG, transformen las formas ácidas de las moléculas de interés, produciéndose el proceso de descarboxilación de las mismas transformándolas en sus respectivas formas neutras, cuantificándose la suma de las mismas proporcionando el contenido de THC total.

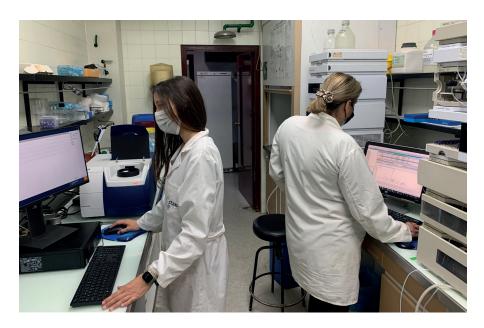
Algunos científicos consideran que esta técnica no sea tan exacta dado que los resultados podrían estar infraestimados debido a una descarboxilación incompleta, se produjera la evaporación parcial de algún compuesto o se creasen formas degradadas que no existen de forma natural en la muestra.

Estos inconvenientes se pueden evitar realizando tratamientos previos al análisis como es la derivatización de las muestras, lo que implica una dificultad extra en la metodología y un aumento en su coste, que hace que la técnica HPLC sea una buena alternativa para el análisis de cannabinoides.

Actualmente el HPLC se puede considerar como la técnica más potente en el análisis de cannabinoides para el análisis de material vegetal, validada por la AOAC también para aceites y extractos. Esta técnica no aplica calor e identifica y cuantifica por separado las formas ácidas y las neutras, y los resultados aportados representan el valor real de la muestra en el momento del análisis. Finalmente, esta técnica aporta más información sobre el perfil en cannabinoides, pudiendo obtener además mediante un cálculo sencillo el porcentaje total o potencial total estimado de cannabinoides, referido al porcentaje máximo de molécula neutra al que llegaría mi planta si se produjese una descarboxilación perfecta.

Para realizar el cálculo hay que tener en cuenta el factor de conversión que se obtiene, conociendo que en el proceso de descarboxilación se produce la pérdida de una molécula de dióxido de carbono (CO₂). El contenido total para los 3 cannabinoides principales se obtienen de las siguientes fórmulas:

%THC total= (%THCA) x 0.877 + (%THC) %CBD total= (%CBDA) x 0.877 + (%CBD) %CBG total= (%CBGA) x 0.878 + (%CBG)


Es importante conocer las características de ambas técnicas y la forma de expresar los cannabinoides porque puede resultar confuso a la hora de interpretar resultados.

El contenido de THC total de una muestra, en el caso de HPLC, viene determinado por la suma de la forma neutra y la estimación de la descarboxilación de su forma ácida, mientras que en la CG se proporciona el total directamente en ocasiones nombrándolo como THC lo que lleva a confusión. Aun así, la diferencias entre los valores totales de ambas técnicas para una misma muestra pueden ser significativos.

Definiciones legales confusas

Existe un dilema constante al tratar de cultivar legalmente un cultivo a menudo rodeado de incertidumbre y confusión legal. Por una parte, se considera que el límite de THC establecido en la UE para las variedades catalogadas de cáñamo industrial es de un 0.2% de THC (próximamente un 0.3%). Sin embargo, esta definición legal puede resultar confusa si no se especifica que ese valor debería corresponder al THC total. Es de suma importancia, en los análisis por HPLC tener en cuenta las formas ácidas de las muestras, que aparte de ser las mayoritarias en muestras vegetales, son los precursores que evolucionan a moléculas neutras y son las que determinan el potencial total de la planta. Si solo tuviésemos en cuenta la forma neutra, en este caso el valor de THC, podría resultar confuso, puesto que la misma muestra podría ser legal y no legal al mismo tiempo si la analizásemos por HPLC o CG, o incluso, dejar de ser legal en un futuro próximo.

Por otra parte, además del límite legal para el THC establecido para cáñamo industrial, existe la clasificación tipo fibra o tipo droga de cannabis de la UNODC que se emplea para diferenciar ambos tipos mediante la relación entre los principales cannabinoides, el THC, el CBN y el CBD. El CBN se tiene en cuenta en este cálculo por ser una de las degradaciones que puede formar el THC una vez que se ha cortado y secado la planta.

Se precisa por parte de los científicos de la industria que aboguen por soluciones para toda esta problemática y gracias a todo ello impulsar y potenciar el sector

Para clasificar las variedades se establece la relación entre las áreas de los picos cromatográficos obtenidos de la siguiente forma:

[THC+CBN]/CBD es <1 se considera tipo fibra [THC+CBN]/CBD es >1 se considera tipo droga

Este cálculo, genera confusión al encontrar variedades de cáñamo industrial que superan el límite legal establecido para THC y al mismo tiempo se consideran tipo fibra según esta clasificación.

Diferencias interlaboratorios

La dispersión de los resultados que existe al analizar las mismas muestras en diferentes laboratorios hace que sea muy complejo realizar análisis comparativos de las mismas. Este hecho, unido a la escasez de materiales de referencias y de ejercicios intercomparativos para cannabis hace que lejos de estandarizar una metodología, la variabilidad interlaboratorio sea significativa, incluso utilizando las mismas técnicas analíticas.

El principal problema analítico, radica generalmente, en la preparación de las mues-

tras (secado,molienda y tamizado) y en las técnicas extractivas de los compuestos de interés (disolvente, tiempo de extracción, temperatura, centrifugación).

Una vez más, la falta de una técnica estandarizada resulta una problemática a la hora de darle veracidad y credibilidad a los laboratorios de análisis ya que una misma muestra analizada en distintos laboratorios aporten resultados con diferencias significativas.

En definitiva, hay que debatir numerosos problemas en torno a la analítica de cannabinoides, para lograr una armonización de los criterios para el cultivo en toda la UE abordando los siguientes contenidos:

- Establecer directrices únicas para la toma y conservación de las muestras.
- Estandarizar la técnica instrumental para cuantificar cannabinoides,
- Unificar la interpretación clara de los resultados a la hora de determinar la legalidad de un cultivo de cáñamo.

Además, se precisa por parte de los científicos de la industria que aboguen por soluciones para toda esta problemática y gracias a todo ello impulsar y potenciar el sector. En esta línea, para paliar toda esta problemática actual y favorecer la labor del sector agrícola, CTAEX, centro de referencia analítico, investiga nuevas metodologías rápidas, aunque no tan precisas para la monitorización de los cannabinoides, ideales para las fases intermedias del cultivo y combinada con otras más precisas como la cromatografía (HPLC) ideal para el control de calidad de lotes y/o producto final ①